

PROVINCIAL EXAMINATION NOVEMBER 2023 GRADE 11 MARKING GUIDELINES

MATHEMATICS (PAPER 1)

18 pages

INSTRUCTIONS AND INFORMATION

A – ACCURACY C.A. – CONTINUED ACCURACY

NOTE:

- If a candidate answered a question TWICE, mark only the first attempt.
- If a candidate crossed OUT an answer and did NOT redo it, mark the crossed-out answer.
- Consistent accuracy applies to ALL aspects of the marking guidelines.
- Assuming values/answers in order to solve a question is UNACCEPTABLE.

MARKING GUIDELINES	MATHEMATICS				
MARKING GUIDELINES	(PAPER 1)	GRADE 11			

1.1	1.1.1	$K = \sqrt{\frac{5}{p+2}} + \frac{p}{3}$		
		$K = \sqrt{\frac{5}{3+2}} + \frac{3}{3}$		
			✓ simplification	
		$K = \sqrt{1} + 1$		
		$\therefore K = 2$	✓ answer	(2)
	1.1.2	$K = \sqrt{\frac{5}{p+2} + \frac{p}{3}}$		
		$\therefore p+2 > 0$		
		$\therefore p > -2$	✓ answer	
		NOTE: Answer only, full marks.		(1)
1.2	1.2.1	$3x^2 = 4x + 2$		
		$\therefore 3x^2 - 4x - 2 = 0$		
		$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} + 1$		
		$x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(3)(-2)}}{2(3)} + 1$	✓ substitution	
		$\therefore x = 1,72 \text{ or } x = -0,39$	✓ answers	
		NOTE: Penalise with 1 mark for rounding-		
		off in this question ONLY. Answers		
		only, 1 mark.		(2)

MATHEMATICS (PAPER 1)

г <u>г</u>		[]	
1.2.2	$x^2 + 10x > -21$		
	$x^2 + 10x + 21 > 0$	\checkmark standard form	
	(x+7)(x+3) > 0	✓ factors	
	$\frac{1}{1-7} - \frac{1}{1-7} + \frac{1}{1-7} - \frac{1}{1-7} + \frac{1}$		
	x < -7 or x > -3	✓ ✓ answers	
	NOTE: Penalise with 1 mark for the use of AND instead of OR .		(4)
1.2.3	$\sqrt{x^2 - 5} = 2\sqrt{x}$	✓ squaring both sides	
	$(\sqrt{x^2-5})^2 = (2\sqrt{x})^2$	✓ simplification	
	$x^2 - 5 = 4x$	✓ standard form	
	$x^2 - 4x - 5 = 0$	✓ factors	
	(x-5)(x+1) = 0	✓ both answers with	
	$\therefore x = 5 \text{ or } x = -1(N/A)$	exclusion	(5)
1.2.4	$3^{x+1} + 3^{x-1} = \frac{10}{9}$		
	$3^x \cdot 3^1 + 3^x \cdot 3^{-1} = \frac{10}{9}$	\checkmark factorisation	
	$\therefore 3^x \left(3^{-1} + \frac{1}{3} = \frac{10}{9} \right)$		
	$\therefore 3^{x} \cdot \frac{10}{3} = \frac{10}{9}$		
	$\therefore 3^x = \frac{1}{3}$	✓ simplification	
	$\therefore 3^x = 3^{-1}$	✓ same bases	
	x = -1	✓ answer	(4)

MATHEMATICS (PAPER 1)

1.3	1.3.1	$x + y = 2$ and $y + 1 = \frac{-3}{x - 1} \dots (2)$			
		$x = 2 - y \dots (1)$	\checkmark	x as subject in (1)	
		sub (1) into (2)			
		-3			
		$y + 1 = \frac{-3}{2 - y - 1}$	\checkmark	substitution in (2)	
		$y + 1 = \frac{-3}{1 - y}$			
		y' + 1 = 1 - y			
		(y+1)(1-y) = -3			
		$1 - y^2 = -3$			
		$y^2 = 4$	\checkmark	value of y^2	
			\checkmark	values for y	
		$y = \pm 2$ sub into (1)			
		x = 2 - 2 of $x = 2 - (-2)$			
		x = 0 $x = 4$	\checkmark	values for <i>x</i>	
		NOTE: Any other valid method.			(5)
	1.0.0				
	1.3.2	$\left(\frac{1}{x} + \frac{1}{y}\right)$			
		$\begin{pmatrix} x & y \end{pmatrix}$			
		$\begin{pmatrix} 1 & 1 \end{pmatrix}$			
		$\left(\frac{1}{4} + \frac{1}{-2}\right)$	\checkmark	correct selection for <i>x</i>	
				and u values	
		$= -\frac{1}{2}$		and <i>y</i> values	
		4	\checkmark	answer	(2)
1.4	1.4.1	$2mx^2 - (m-2)x + m + 1 = 0$			
		$\Delta = b^2 - 4ac$	~	substitution	
		$\Delta = [-(m-2)]^2 - 4(2m) (m+1)$	ľ	substitution	
		$\Delta = (m-2)^2 - 8m(m+1)$	\checkmark	simplification	
		$\Delta = m^2 - 4m + 4 - 8m^2 - 8m$	✓	standard form	
		$\Delta = 7m^2 - 12m + 4$			
		For real roots, $\Delta \ge 0$	\checkmark	condition for Δ	
		$\therefore 7m^2 - 12m + 4 \ge 0$			
		$\therefore 7m^2 + 12m - 4 \le 0$			
		$\therefore (7m-2)(m+2) \le 0$	✓	factors	
		$\therefore -2 \le m \le \frac{2}{2}$	\checkmark	answers	
		7			(6)

MARKING GUIDELINES	MATHEMATI	CS
MARKING GUIDELINES	(PAPER 1)	GRADE 11

		-		(2)
	-1 < m < 0	\checkmark	answer	(2)
	∴ Real roots opposite in sign for:			
	$\therefore m > -1$			
	$\therefore m+1 > 0$			
	$\therefore c > 0$	\checkmark	condition of 'c'	
	<i>c</i> must be positive.			
1.4.2	For roots to have opposite signs, the value of			
	1.4.2	$\therefore c > 0$ $\therefore m + 1 > 0$ $\therefore m > -1$	'c' must be positive. ∴ $c > 0$ ∴ $m + 1 > 0$ ∴ $m > -1$ ∴ Real roots opposite in sign for:	c' must be positive. $c > 0$ $(m + 1 > 0)$ $(m > -1)$ $(m > -1)$ $(m < 0)$ $(m < 10)$

2.1	2.1.1	$\left\{\frac{1}{64x^{-3}}\right\}$			
		$=\left\{\frac{2^9 x^3}{2^6 x^{-3}}\right\}^{-\frac{1}{3}}$	~	prime bases	
		$= \{2^{3}x^{6}\}^{-\frac{1}{3}} \\= \{2^{-1}x^{-2}\}$			
		$=\frac{1}{2} \times \frac{1}{x^2}$	~	simplification	
		$=\frac{1}{2x^2}$	~	answer	
		NOTE: Any correct alternative method.			(3)
	2.1.2	$ \frac{x^{2} - 1}{x^{2} - 1} = \frac{x^{n}(x^{2} - 1) + x^{n}(x - x^{-1})}{x^{2} - 1} = \frac{x^{n}(x^{2} - 1) + x^{n}(\frac{x^{2} - 1}{x})}{x^{2} - 1} $	~	factorisation	
		$=x^n+x^n\frac{1}{x})$	~	simplification	
		$= x^n + x^{n-1}$	\checkmark	answer	
		NOTE: Any correct alternative method.			(3)

MATHEMATICS (PAPER 1)

2	2.1.3	$\sqrt{u} + \sqrt{2u} - 1$	A single surd
		$= \sqrt{a^2 - (\sqrt{2a - 1})^2}$ $= \sqrt{a^2 - 2a + 1}$ $= \sqrt{(a - 1)^2}$ $= a - 1$ \checkmark quadratic \checkmark factors \checkmark answer	expression
		NOTE: Any correct alternative method.	(4)
	∴ <i>x</i> +	$\sqrt{2} (x + y \sqrt{z}) = -3 + \sqrt{2})$ $y \sqrt{z} = \frac{(-3 + \sqrt{2})}{1 - \sqrt{2}} \times \frac{1 + \sqrt{2}}{1 + \sqrt{2}}$ $y \sqrt{z} = \frac{(-3 + \sqrt{2})(1 + \sqrt{2})}{1 - 2}$ isolating and ration	
	∴ <i>x</i> +	$y \sqrt{z} = \frac{-3 - 2\sqrt{2} + 2}{-1}$ $y \sqrt{z} = 1 + 2\sqrt{2}$ $(x - 1) = 1$ $(x - 2) = 1$ $(x - 3) = 1$ $(x$	
	$\therefore z =$		(4)
			[14]

QU	ESTIO	N 3		
3.1	3.1.1	Multiply the previous term by $\cos x$.	✓ answer	(1)
	3.1.2	$\sin x \cdot \cos^2 x$	✓ answer	(1)
3.2	3.2.1	-1; 2; 5; 8;		
		$T_2 - T_1 = T_3 - T_2$		
		$T_2 - T_1 = 2 - (-1) = 3$		
		$T_3 - T_2 = 5 - 2 = 3$		
		$\therefore d = 3$	✓ value of d	
		\therefore $T_n = dn + a$		
		\therefore $T_n = 3n + a$	✓ substitution	
		$\therefore -1 = 3(1) + a$		
		$\therefore a = -4$	\checkmark value of <i>a</i>	
		\therefore $T_n = 3n - 4$	✓ answer	
		NOTE: Answer only, full marks.		(4)

MATHEMATICS (PAPER 1)

GRADE 11

3.2.2	$T_n = 3n - 4$			
	161 = 3n - 4	\checkmark	substitution	
	165 = 3n			
	$\therefore n = 55$	\checkmark	answer	(2)
				[8]

4.1	4.1.1	25 squares	\checkmark	answer	(1)
	4.1.2	64 dots	\checkmark	answer	(1)
	4.1.3				
		5 7 9		1.11.00	
		2 2		second difference	
		2a = 2			
		$\therefore a = 1$	v	value of <i>a</i>	
		3a + b = 5			
		$\therefore b = 2$	\checkmark	value of <i>b</i>	
		a+b+c=4			
		$\therefore c = 1$	\checkmark	value of <i>c</i>	
		$\therefore T_n = n^2 + 2n + 1$			
		$\therefore T_n = (n+1)^2$			(4)
4.2	4.2.1	17 ; 10 ; 5 ; 2 ; $\frac{1}{7}$; $\frac{2}{7}$			
		$\therefore r = 1$	\checkmark	answer	
		$\therefore s = 2$	\checkmark	answer	(2)
L			1	with 11 01	(2)

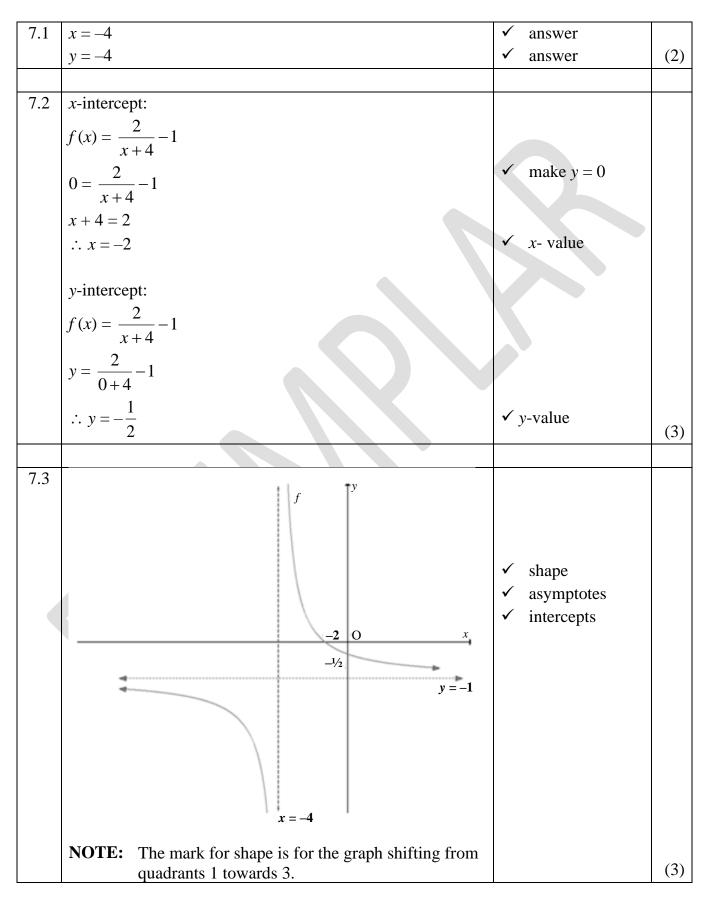
			MARKING GUIDELINES		ATHEMATICS APER 1)	GRAD	E 11
	4.2.2	2a = 2		✓	2 ^{<i>nd</i>} difference		
	1.2.2	$\therefore a = 1$			value of <i>a</i>		
				•	value of <i>u</i>		
		$d(n) = n^2 + bn +$					
		$d(1) = 1^2 + b(1)$					
		$\therefore 17 = 1 + b + c$					
		$\therefore 16 = b + c \dots ($	(2)				
		$d(2) = 2^2 + b(2)$	+ <i>c</i>				
		$\therefore 10 = 4 + 2b + c$	с				
		$\therefore 6 = 2b + c \dots ($	(1)				
		(1) - (2)					
		$\therefore b = -10$		~	value of <i>b</i>		
		$\therefore 16 = -10 + c \; .$	(2)				
		$\therefore c = 26$ NOTE: Any c	other valid method.	✓	value of <i>c</i>		(4)
	4.2.3	$d(n) = n^2 - 10n$	+ 26				
	4.2.5	$d(n) = n^{2} = 10n^{2}$ $\therefore d(8) = 8^{2} - 10^{2}$		\checkmark	substitution		
		$\therefore d(8) = 10m$	5(0) + 20	\checkmark	answer		(2)
4.2	4.2.4	$d(n) = n^2 - 10n$					
		\therefore Minimum turn -(-10)	ning point				
		$\therefore n = \frac{-(-10)}{2(1)}$		\checkmark	substitution		
		$\therefore n = 5$		√	value of <i>n</i>		
		$\therefore n > 0 \dots n \in$	N	•	value of <i>n</i>		
		: minimum valu		\checkmark	explanation and		
		∴ Mikayla is CO			choice of Mikayl	la	
			arks are awarded for correct only. The explanation and the				
			e in name must correlate.				(3)
							[17]

MARKING GUIDELINES	MATHEMATICS		
WARKING GUIDELINES	(PAPER 1)	GRADE 11	

5.1	A = P(1)	$(1-i)^n$		
	$\frac{1}{3} = (1)$	$(-i)^2$	✓ correct substitution	
	3		into correct formula	
	<i>i</i> = 0,42		✓ answer	
	NOTE			
		and the interpretation of substituting for A and P.		(2)
5.2	5.2.1	$1 + i_{eff} = \left(1 + \frac{i_{nom}}{n}\right)$		
		(n)	✓ correct substitution	
		$(0.075)^{12}$	into correct formula	
	$1 + i_{eff} = \left(1 + \frac{0,075}{12}\right)^{12}$			
		$i_{eff} = 0,07763$	✓ simplification	
		$i_{eff} = 7,76\%$	✓ answer	(3)
	5.2.2	$A = P(1-i)^n$	0.075	
		$\therefore A = 10\ 000(1 + \frac{0.075}{12})^{12}\ (1 + \frac{0.078}{4})^8 + $	$\checkmark 10\ 000(1+\frac{0.075}{12})^{12}$	
		$5000(1 + \frac{0,078}{4})^6$	✓ $x(1+\frac{0.078}{4})^8$	
		$3000(1 + \frac{1}{4})$		
	$\therefore A = R18 \ 191,03$		$\checkmark 5000(1+\frac{0.078}{4})^6$	
			✓ answer	
		YES. He will have sufficient funds.	✓ conclusion	
		NOTE: The values must be substituted into		
		the correct formula. Only award the conclusion mark if a valid calculation		
		has been done.		(5)
		hus been done.		(J)

MATHEMATICS (PAPER 1)

GRADE 11


5.3 Mervin:				
A = P(1 - ni)				
$A = 6\ 000(1 + 5 \ \mathrm{x}\ 0.08)$	35)	✓	correct substitution into	
			correct formula	
$A = \mathbf{R8}\ 550$		✓	value of A (Mervin)	
$\therefore 5\% \text{ x R6 } 000 = \text{R30}$	0			
\therefore total = R8 550 + R3	300	✓	bonus value +	
A = R8 850			final value of A	
			(Mervin)	
Haley:				
$i = 0.08 \div 4 = 0.02$				
$n = 5 \ge 4 = 20$				
$A = P(1-i)^n$				
$A = 6\ 000(1+0.02)^{20}$		~	correct substitution into	
			correct formula	
A = R8 915,68		✓	value of A (Haley)	
Haley will have the lar	rger investment.	✓	conclusion	
-	the conclusion mark if a valid has been done.			
	las been done.			(6) [16]

6.1	$x \in \mathfrak{R}$ OR	✓ answer	
	$x \in (-\infty; \infty)$		(1)
6.2	<i>y</i> = 0	✓ answer	(1)
6.3	$f(x) = a.b^x$		
	$f(x) = a.b^{x}$ $144 = a.\left(\frac{3}{4}\right)^{2}$	✓ substitution	
	a = 256	✓ answer	(2)

MATHEMATICS (PAPER 1)

6.4	$g(x) = 256 \left(\frac{3}{4}\right)^{-x}$			
		\checkmark	answer	
	\mathbf{OR}			
	$g(x) = 256 \left(\frac{4}{3}\right)^{x}$			
	(3)			(1)
6.5	Increasing function.	\checkmark	answer	
0.5	If x increases, increases $f(x)$.	\checkmark	explanation	(2)
	in w moreuses j (w).	\checkmark		(=)
6.6	$[f(x)]^{2} - [f(-x)]^{2} = a \cdot f(2x) - a \cdot f(-2x)$			
	LHS			
	$[f(x)]^2 - [f(-x)]^2$			
	$[256(\frac{3}{4})^{x}]^{2} - [256(\frac{3}{4})^{-x}]^{2}$	\checkmark	substitution	
	$= [256^{2} (\frac{3}{4})^{2x}] - [256^{2} (\frac{3}{4})^{-2x}]$	\checkmark	answer (LHS)	
	4 4			
	DUC			
	RHS			
	a.f(2x) - a.f(-2x)			
	$= 256 \left[256(\frac{3}{4})^{2x} \right] - 256 \left[256(\frac{3}{4})^{-2x} \right]$			
	$= 256^2 \left(\frac{3}{4}\right)^{2x} - 256^2 \left(\frac{3}{4}\right)^{-2x}$	\checkmark	answer (RHS)	(3)
				[10]
				<u>[</u> *v]

MARKING GUIDELINES	MATHEMATIC	CS
MARKING GUIDELINES	(PAPER 1)	GRADE 11

MATHEMATICS (PAPER 1)

GRADE 11

7.4	(-6;-2)	\checkmark <i>x</i> -value	
		✓ y-value	(2)
7.5	$y \in \Re$ and $y \neq 1$	✓ answer	
	NOTE: Both conditions must be stated.		(1)
7.6	Reflection in the <i>y</i> -axis	✓ answer	(1)
	·		[12]

8.1	$y = a(x+p)^2 + q$			
	$\therefore 6 = a(0-1)^2 + 8$	\checkmark	substitute points (1;8)	
	$\therefore 6 = a + 8$			
	$\therefore a = -2$		and (0; 6)	
		\checkmark	value for <i>a</i>	
	$y = -2(x-1)^2 + 8$			
	$y = -2(x^2 - 2x + 1) + 8$		correct simplification	
	$y = -2x^2 + 4x - 2 + 8$		confect simplification	
	$\therefore y = -2x^2 + 4x + 6$			
	NOTE: The mark for simplification is awarded			
	either at the 3^{rd} or 2^{nd} last step.			(3)
8.2	$j(x) = -2x^2 + 4x + 6$			
	$\therefore j(3) = 0 \dots (3;0)$			
	$\therefore j(1) = 8 \dots (1;8)$	\checkmark	coordinates of $j(3)$ and	
	$y_2 - y_1 - y_1$		<i>j</i> (1)	
	$m = \frac{y_2 - y_1}{x_2 - x_1}$			
		\checkmark	correct substitution	
	$m = \frac{8-0}{1-3}$./	0.000	
	$\therefore m = -4$	ľ	answer	
	NOTE: Candidates do not have to write the			
	coordinates.			(3)
L	coordinates.	I		(3)

MATHEMATICS (PAPER 1)

8.3	j(x) = k(x)			
0.5		\checkmark	equating	
	$-2x^2 + 4x + 6 = \frac{1}{3}x - 1$			
	$-6x^2 + 12x + 18 = x - 3$			
	$-6x^2 + 11x + 21 = 0$	\checkmark	standard form	
	$-6x^{2} - 11x - 21 = 0$ (x - 3)(6x + 7) = 0	\checkmark	factors	
			lactors	
	$x \neq 3$ or $x = -\frac{7}{6}$	\checkmark	<i>x</i> -values with exclusion	
	$k\left(-\frac{7}{6}\right) = -\frac{25}{18}$			
	$\therefore \mathbf{P}\left(-\frac{7}{6};-\frac{25}{18}\right)$	\checkmark	y-value	
	NOTE: Answer need not be in coordinate form.			(5)
8.4	$VW = -2x^2 + 4x + 6 - \frac{1}{3}x + 1$	~	method	
	$VW = -2x^2 + \frac{11}{3}x + 7$			
	$VW = -2\left(x^2 - \frac{11}{6}x - \frac{7}{2}\right)$	~	simplification	
	$VW = -2\left(x^2 - \frac{11}{6}x + \frac{121}{144} - \frac{121}{144} - \frac{7}{2}\right)$	~	method	
	$VW = -2\left(x - \frac{11}{12}\right)^2 + \frac{625}{72}$			
	VW max = $\frac{625}{72}$ of 8,68 units	~	answer	
	OR		OR	

MADZING CUIDEI INES	MATHEMATICS		
MARKING GUIDELINES	(PAPER 1)	GRADE 11	

	VW =	$-2x^2 + 4x + 6 - \left(\frac{1}{3}x - 1\right)$	✓ method	
	VW =	$-2x^2 + 4x + 6 - \frac{1}{3}x + 1$		
	VW =	$-2x^2 + \frac{11}{3}x + 7$	✓ simplification	
	Turniı	ng point:		
		11		
	$x = \frac{1}{20}$	<u>3</u> (-2)	✓ method	
	$\therefore x =$	$\frac{11}{12}$		
		$ax = \frac{625}{72}$ of 8,68 units	✓ answer	(4)
8.5	8.5.1	<i>x</i> < 1	✓ answer	(1)
	0.7.0			
	8.5.2	$x \ge -1 \dots but \dots x \ne 3$		
		$\therefore -1 \le x < 3 \dots or \dots x > 3$	✓✓ answers	
		NOTE: Both answers must be completely		
		correct.		(2)
8.6	<i>k</i> < 8		✓✓ answer	(2)
				[20]

MARKING GUIDELINES	MATHEMATIC	S
WARKING GUIDELINES	(PAPER 1)	GRADE 11

ANSWERS CAN EITHER BE IN FRACTION OR DECIMAL FORM.

9.1	0,7 0,7 C 0,1 I 0,2 0,9 C 0,1 I 0,1 I	$0,7 C \\ 0,1 I C \\ 0,2 U \\ 0,9 \\ 0,0,1 I \\ 0,7 C \\ 0,1 I \\ 0,$	✓ Tree 1 ✓ Tree 2	
	Tree 1	Tree 2		(2)
9.2	$P(C \text{ and } C) = 0,7 \ge 0,7$		\checkmark correct method	
	P(C and C) = 0,49 NOTE: Answer only, 1	full marks.	✓ answer	(2)
9.3	P(C) or $P(L and C)$		✓ 0,7	
1.5				
	$= 0,7 + (0,2 \ge 0,9)$		✓ + $(0,2 \times 0,9)$	
	= 0,88	✓ answer		
	NOTE: Answer only, full marks.			(3) [7]
L				[']

MARKING GUIDELINESMATHEMATICS
(PAPER 1)GRADE 11

10.1 10.1.1 P(A and C) = 0 10.1.2 P(B and C) = P(B) x P(C) = 0,4 x 0,2 = 0,08 NOTE:	 ✓ answer ✓ correct formula or correct substitution ✓ answer 	(1)
$= P(B) \times P(C) = 0.4 \times 0.2 = 0.08$	correct substitution ✓ answer	
$= P(B) \times P(C) = 0.4 \times 0.2 = 0.08$	correct substitution ✓ answer	
$= 0.4 \times 0.2 = 0.08$	✓ answer	
= 0,08	✓ answer	
		(2)
10.1.3 P(A and B)		
$= P(A) \times P(B)$)
$= 0,3 \ge 0,4$	✓ correct substitution	
= 0,12	✓ value of $P(A \text{ and } B)$	
P(A or B) = P(A or B)	A) + P(B) - P(A and B)	
	$3 + 0, 4 - 0, 12$ \checkmark correct substitution	
P(A or B) = 0,	58 ✓ answer	(4)
10.2 10.2.1 $8 + 10 + x + 65$	5 + 3 + 5 + 5 + 2 = 103	
x = 5	✓ answer	(1)
$10.2.2 P(any2) = \frac{n(any2)}{n(any2)}$	<u>ny2)</u>	
	(S) $\checkmark \frac{n(any2)}{(2n)}$ with	
$P(any2) = \frac{10}{2}$	$-65+5+5 \qquad \qquad n(S)$	
$P(any2) \equiv $	103 correct substitution	
85		
$P(any2) = \frac{85}{103}$	✓ answer (any shape)	
P(any2) = 0.83		(2)
1 (uny2) = 0,02		(2)
10.3 9 (17+8) (17+	$(-8) \times \frac{9}{x}$ \checkmark correct substitution	
$\left \frac{10.5}{80} \right \frac{9}{80} \times \frac{(17+6)}{79} + \frac{(17+6)}{80}$	$\frac{1}{79}$ x $\frac{1}{79}$	
$\frac{9}{11} \times \frac{25}{11} + \frac{25}{11} \times \frac{9}{11}$	\checkmark simplification	
$\frac{1}{80} \times \frac{25}{79} + \frac{25}{80} \times \frac{7}{79}$	····· r ······	
	0,0712	
	$\approx 0.0712 \dots$ \checkmark answer	
~ 0,07	· answer	(3) [13]
		[10]
	TOTAL:	150