

DEPARTMENT OF EDUCATION

SEKHUKHUNE SOUTH

MATHEMATICS

GRADE 10

TEST

OCT 2023

MARKS: 50

DURATION: 1 Hour

INSTRUCTIONS

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 2 questions and 4 pages. Answer ALL the questions.
- Clearly show all calculations, diagrams, graphs, et cetera, which you have used in arriving at your answers.
- 3. Answers only will not necessarily be awarded full marks.
- You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 5. If necessary, round off answers to **TWO** decimal places, unless stated otherwise.
- 6. Diagrams are not necessarily drawn to scale.
- Number your answers correctly according to the numbering system used in this question paper.
- 8. Write legibly and present your work neatly.

QUESTION 1

1.1 Given the linear pattern: 2a + 2, 3a + 4, 5a + 6,

			[21]
	1.2.3	Determine which row will have enough seats for 64 people.	(3)
	1.2.2	Hence or otherwise determine the number of seats in row 19.	(3)
	1.2.1.	Determine the formula to calculate the number of seats in the nth row.	(3)
1.2	A chur	ch hall has 40 seats in the first row, 42 in the second row, 44 in the third row, etc.	
	1.1.5	Determine the largest value of <i>n</i> for which $T_n < 166$	(3)
	1.1.4	Which term of the sequence has a value of 108?	(3)
	1.1.3	Hence or otherwise, determine the 18 th term of the sequence.	(2)
	1.1.2	Write down a formula for the general term, T_{n} .	(2)
	1.1.1	Calculate the numerical value of the fourth term, if $a = 0$	(2)

QUESTION 2

(Formulae: $V = \frac{1}{3}$ area of base \times H, $V = \pi r^2 h$, $SA = \pi r^2 + 2\pi r h$, $SA = \pi r s$) $SA = \pi r(r + h)$

2.1 The height of a cylinder is 11 cm, and the radius is 3cm

- 2.1.1 Calculate the volume of the cylinder in cm^3 . (3)
- 2.1.2 Calculate the total surface area of the cylinder (in cm^2), assuming that it is closed. (4)
- 2.1.3 Calculate the number of cylinders that can fit into a rectangular box with a length of (4)24cm, breadth of 18cm and a height of 22 cm.

2.1.4 Manufacturers double the radius but keep the same height of the cylinder.

- (a) Determine the new volume of the cylinder. (3)
- (b) By what scale factor will the area of the top (cover) of the original cylinder (2) increase when the radius is doubled?
- By what scale factor will the area of the curved surface of the original cylinder (2) increase when the radius is doubled?
- 2.2 A rectangle with a length x units and a width y units has a perimeter of 50 cm.

Show that the area of the rectangle is given by $A = 25x - x^2$, if the perimeter is p = 2y + 2x. (5)

2.3 A cone with a radius of 5 cm and a height of 8 cm is shown below.

		[29]
2.3.3	Calculate the volume of the cone.	(2)
2.3.2	Hence or otherwise determine the surface area of the cone.	(2)
2.3.1	Using the theorem of Pythagoras or otherwise, calculate the slant height, s, of the cone.	(2)

TOTAL:50